Abstract

By means of the similarity transformation, we obtain exact self-similar solutions (similaritons) of the generalized cubic-quintic (CQ) nonlinear Schrödinger equation with spatially inhomogeneous group velocity dispersion, CQ nonlinearity and amplification or attenuation. Exact balance conditions between the dispersion, nonlinearity and the gain/loss have been obtained. As an example, we investigate their propagation dynamics in the dispersion decreasing fiber (DDF). Considering the fluctuation of the fiber parameter in real application, the exact balance conditions do not satisfy, and so we perform direct numerical analysis with initial 10% white noise for the bright similariton in both the DDF and the periodic distributed amplification system. Numerical calculations indicate stable propagation of the bright similariton over tens of dispersion lengths. These ultrashort self-similar optical waves are potentially useful for all-optical data-processing schemes and the design of beam compressors and amplifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.