Abstract

Reshaping of ultrashort pulses is predicted to occur when a pulse train from a mode-locked laser is incident upon a nonlinear Fabry–Perot cavity whose length is matched to the period of the pulse train. The temporal shape of the transmitted pulses depends on the relaxation time of the nonlinearity of the Kerr medium inserted into the Fabry– Perot cavity. When the pulse duration is shorter than the Kerr relaxation time, considerable pulse narrowing (by factors of 101–103) is predicted. If the Kerr relaxation time is longer than the period of the pulse train, the analysis shows the existence of two temporal shapes of the output pulse, leading to the possibility of bistability between these two states. A Kerr nonlinearity with an instantaneous response can be used to generate square output pulses. Both the transient and the permanent regimes are investigated, and analytical expressions for the narrowing factors are found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.