Abstract

Ultrashort-pulse laser-induced breakdown spectroscopy (LIBS), specifically using a femtosecond laser, has certain advantages over longer-pulse, nanosecond-duration lasers, in that they typically have kilohertz repetition rates and reduced background noise along with little-to-no laser-plasma interaction, all of which lead to a better chance of detecting LIBS signals from trace particles. In this work, femtosecond-LIBS is investigated for the detection of metallic particles in the hot flame zone of solid propellant strands burning in the atmosphere. The metallic particles doped into the solid propellants were aluminum (Al), copper, lead, lead stearate, and mercury chloride, which are all either typically found in energetic formulations as additives or impurities. Using an 80-fs-pulse-duration, amplified Ti:Sapphire laser operating at 1000 Hz, single-shot concentration measurement experiments were performed. The femtosecond-LIBS apparatus could detect all metallic additives, whereas a previous nanosecond-LIBS scheme with comparable conditions was able to detect only higher concentrations of Al. The single-shot concentration study, conducted with the Al-doped propellants, indicated that there is a linear relationship between the percentage of laser shots detecting a LIBS signal and the mass percentage of Al initially present in the strands. The present results illustrate the advantages of using a femtosecond laser over a nanosecond laser for LIBS detection during energetics material reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.