Abstract

An experimental and theoretical investigation of ultrashort pulse damage thresholds of Si and Ge semiconductors has been carried out. As the source of laser radiation, a commercial sub picosecond Ti:Sapphire laser system has been used. It produces laser pulses of 0.5 mJ pulse energy at 1 kHz repetition rate, providing a Gaussian-like beam profile. Compressor tuning allowed for varying the pulse duration from 150 fs to 5.5 ps. The laser damage thresholds were measured in air and for this pulse duration range. The damage morphologies were investigated with various microscopic inspection techniques like Nomarski DIC, atomic force and white light interference microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.