Abstract

Conditions are studied under which an electron beam and a volume discharge with a subnanosecond rise time of a voltage pulse are produced in air under atmospheric pressure. It is shown that the electron beam appears in a gas-filled diode at the front of the voltage pulse in ∼0.5 ns, has a half-intensity duration of ≤0.4 ns and an average electron energy of ∼0.6 of the voltage across the gas-filled diode, and terminates when the voltage across the gap reaches its maximum value. The electron beam with an average electron energy of 60 to 80 keV and a current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from electrons produced in the gap due to gas ionization by fast electrons when the intensity of the field between the front of the expanding plasma cloud and the anode reaches its critical value. A nanosecond volume discharge with a specific power input of ≥400 MW/cm3, a density of the discharge current at the anode of up to 3 kA/cm2, and specific energy deposition of ∼1 J/cm3 over 3 to 5 ns is created.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call