Abstract

Ultrashort echo time (UTE) MRI can quantify the major proton pool densities in cortical bone, including total (TWPD), bound (BWPD), and pore water (PWPD) proton densities, as well as the macromolecular proton density (MMPD), associated with the collagen content, which is calculated using macromolecular fraction (MMF) from UTE magnetization transfer (UTE-MT) modeling. This study aimed to investigate the differences in water and collagen contents in tibial cortical bone, between female osteopenia (OPe) patients, osteoporosis (OPo) patients, and young participants (Young). Being postmenopausal and above 55years old were the inclusion criteria for OPe and OPo groups. The tibial shaft of fourteen OPe (72.5 ± 6.8years old), thirty-one OPo (72.0 ± 6.4years old), and thirty-one young subjects (28.0 ± 6.1years old) were scanned using a knee coil on a clinical 3T scanner. Basic UTE, inversion recovery UTE, and UTE-MT sequences were performed. Investigated biomarkers were compared between groups using Kruskal-Wallis test. Spearman's correlation coefficients were calculated between the total hip dual-energy x-ray absorptiometry (DXA) T-score and UTE-MRI results. MMF, BWPD, and MMPD were significantly lower in OPo patients than in the young group. Whereas T1, TWPD, and PWPD were significantly higher in OPo patients. The largest OPo/Young average percentage differences were found in MMF (41.9%), PWPD (103.5%), and MMPD (64.0%). PWPD was significantly higher (50.7%), while BWPD was significantly lower (16.4%) in OPe than the Young group on average. MMF was found to be significantly lower (27%) in OPo patients compared with OPe group. T1, MMF, TWPD, PWPD, and MMPD values significantly correlated with the total hip DXA T-scores (provided by the patients and only available for OPe and OPo patients). DXA T-score showed the highest correlations with PWPD (R = 0.55) and MMF (R = 0.56) values. TWPD, PWPD, and MMF estimated using the UTE-MRI sequences were recommended to evaluate individuals with OPe and OPo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call