Abstract

Clinical transcranial MR-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a pre-acquired CT scan of the patient’s head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time (UTE) MRI instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system.

Highlights

  • Background/introduction Clinical transcranial MR-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements

  • The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time (UTE) MRI instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system

  • Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 Acoustic Watts at several different target locations within the electronic steering range of the transducer

Read more

Summary

Introduction

Ultrashort echo-time MRI as a substitute to CT for skull aberration correction in transcranial focused ultrasound: in vitro comparison on human calvaria Background/introduction Clinical transcranial MR-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a pre-acquired CT scan of the patient’s head.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.