Abstract

Here, we have developed a novel approach to the visual detection of molybdate with high sensitivity and selectivity in aqueous media based on the combination of catalytic formation of iodine and iodine-mediated etching of gold nanorods. In weak acid solution, like peroxidase, molybdate can catalyze the reaction between H2O2 and I(-) to produce I2, a moderate oxidant, which then etches gold nanorods preferentially along the longitudinal direction in the presence of hexadecyltrimethylammonium bromide. The etching results in the longitudinal localized surface plasmon resonance extinction peak shifts to short wavelength, accompanied by a color change from blue to red. Under optimal conditions, this sensor exhibits good sensitivity with a detection limit of 1.0 nM. The approach is highlighted by its high selectivity and tolerance to interference, which enables the sensor to detect molybdate directly in real samples, such as tap water, drinking water, and seawater. In addition, perhaps the proposed sensing strategy can be also used for other targets that can selectively regulate the formation of I2 under given conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.