Abstract

We proposed an ultrasensitive specific terahertz sensor consisting of two sets of graphene micro-ribbon with different widths. The interference between the plasmon resonances of the wide and narrow graphene micro-ribbons gives rise to the plasmon induced transparency (PIT) effect and enables ultrasensitive sensing in terahertz region. The performances of the PIT sensor have been analyzed in detail considering the thickness and refractive index sensing applications using full wave electromagnetic simulations. Taking advantage of the electrical tunability of graphene's Fermi level, we demonstrated the specific sensing of benzoic acid with detection limit smaller than 6.35 µg/cm2. The combination of specific identification and enhanced sensitivity of the PIT sensor opens exciting prospects for bio/chemical molecules sensing in the terahertz region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.