Abstract
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high-yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water-soluble azobenzene involving 5-[(4, 3-(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross-linker. Through the evaluation of a series of features of spectroscopic and nano-structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo-responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.