Abstract

This paper proposes and demonstrates an ultrasensitive refractive index (RI) sensor based on harmonic Vernier effect (HEV) and a cascaded Fabry-Perot interferometer (FPI). The sensor is fabricated by sandwiching a hollow-core fiber (HCF) segment between a lead-in single-mode fiber (SMF) pigtail and a reflection SMF segment with an offset of 37 µm between two fiber centers to form a cascaded FPI structure, where the HCF is the sensing FPI, and the reflection SMF is the reference FPI. To excite the HEV, the optical path of the reference FPI must be multiple times (>1) that of the sensing FPI. Several sensors have been made to conduct RI measurements of gas and liquid. The sensor's ultrahigh RI sensitivity of up to ∼378000 nm/RIU can be achieved by reducing the detuning ratio of the optical path and increasing the harmonic order. This paper also proved that the proposed sensor with a harmonic order of up to 12 can increase the fabricated tolerances while achieving high sensitivity. The large fabrication tolerances greatly increase the manufacturing repeatability, reduce production costs, and make it easier to achieve high sensitivity. In addition, the proposed RI sensor has advantages of ultrahigh sensitivity, compactness, low production cost (large fabrication tolerances), and capability to detect gas and liquid samples. This sensor has promising potentials for biochemical sensing, gas or liquid concentration sensing, and environmental monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call