Abstract

An ultrasensitive photoelectrochemical (PEC) aptasensor for lead ion (Pb2+) detection was fabricated based on MoS2-CdS:Mn nanocomposites and sensitization effect of CdTe quantum dots (QDs). MoS2-CdS:Mn modified electrode was used as the PEC matrix for the immobilization of probe DNA (pDNA) labeled with CdTe QDs. Target DNA (tDNA) were hybridized with pDNA to made the QDs locate away from the electrode surface by the rod-like double helix. The detection of Pb2+ was based on the conformational change of the pDNA to G-quadruplex structure in the presence of Pb2+, which made the labeled QDs move close to the electrode surface, leading to the generation of sensitization effect and evident increase of the photocurrent intensity. The linear range was 50 fM to 100 nM with a detection limit of 16.7 fM. The recoveries of the determination of Pb2+ in real samples were in the range of 102.5–108.0%. This proposed PEC aptasensor provides a new sensing strategy for various heavy metal ions at ultralow levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call