Abstract

A facile strategy is developed to construct an ultrasensitive pH triggered charge/size dual-rebound gene delivery system for efficient tumor treatment. The therapeutic gene is complexed by polyethylenimine (PEI) and poly-l-glutamate (PLG), further in situ tightened by aldehyde modified polyethylene glycol (PEG) via Schiff base reaction. The generated Schiff base bonds are stable in neutral pH but cleavable in tumor extracellular pH. This gene delivery system possesses following favorable properties: (1) the tunable gene delivery system is constructed by chemical bench-free "green" and fast process which is favored by clinician, (2) PEG cross-linking shields the surface positive charges and tightens the complex particles, leading to decreased cytotoxicity, improved stability, and prolonged circulation, (3) PEG shielding can be rapidly peeled off by acidic pH as soon as arriving tumors, (4) dual charge/size ultrasensitively rebounding to higher positive potential and bigger size enhances tumor cell uptake efficiency. A series of experiments both in vitro and in vivo are carried out to investigate this gene delivery system in detail. An antiangiogenesis therapeutic gene is carried for the treatment of CT26 tumors in mice, achieving superior antitumor efficacy which is well proved by sufficient biological evidence. The system has great potentials for cancer therapy in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.