Abstract

Detection of nucleic acids is crucial in many medical applications, and in particular for monitoring infectious diseases, as it has become perfectly clear after the pandemic infection of COVID-19. In this context, the development of innovative detection methods based on signal-amplification rather than analyte-amplification represents a significant breakthrough compared to existing PCR-based methodologies, allowing the development of new nucleic acid detection technologies suitable to be integrated in portable and low-cost sensor devices while keeping high sensitivities, thus enabling massive diagnostic screening. In this work, we present a novel molecular sensor for the ultrasensitive PCR-free detection of Hepatitis B Virus (HBV) based on electrochemiluminescence (ECL). Thanks to the combination of surface cooperative hybridization scheme with ECL detection strategy, our novel DNA sensor is able to detect HBV genome – both synthetic and extracted – with the unprecedented limit of detection (LoD) of 0.05 cps μL−1 for extracted sample, that is even lower than the typical LoD of PCR methodologies. The detection concept presented here for HBV detection is very versatile and can be extended to other pathogens, paving the way for future development of rapid molecular test for infectious diseases, both viral and bacterial, in Point-of-Care (PoC) format.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.