Abstract

We demonstrate an ultrasensitive optomechanical strain sensor based on a SiN membrane and a Fabry-Perot cavity, enabling the measurements of both static and dynamic strain by monitoring reflected light fluctuations using a single-frequency laser. The SiN membrane offers high-quality-factor mechanical resonances that are sensitive to minute strain fluctuations. The two-beam Fabry-Perot cavity is constructed to interrogate the motion state of the SiN membrane. A static strain resolution of 4.00 nɛ is achieved by measuring mechanical resonance frequency shifts of the SiN membrane. The best dynamic resolution is 4.47 pɛHz-1/2, which is close to that of the sensor using high-finesse cavity and optical frequency comb, overcoming the dependence of ultrasensitive strain sensors on narrow-linewidth laser and high-finesse cavity with frequency locking equipment. This work opens up a promising avenue for a new generation of ultrasensitive strain sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.