Abstract

Self-referencing optical thermometry based on the fluorescence intensity ratio (FIR) have drawn extensive attention as a result of their high sensitivity and non-invasively fast response to temperature. However, it is a great challenge for luminescent materials to achieve simultaneously high absolute and relative temperature sensitivity based on the FIR technique. Herein, we developed a novel optical thermometer by designing hybrid lead-free metal halide (TTPhP)2MnCl4:Sb3+ (TTPhP+ = tetraphenylphosphonium cation) single crystals with multimodal photoluminescence (PL). The large TTPhP+ organic chain resulted in isolated [MnCl4]2- and [SbCl5]2- in the single crystal, which leads to a negligible energy trasfer process within them. Therefore, the two PL bands (band 1 from [MnCl4]2-) with a peak at 518 nm and band 2 (from [SbCl5]2) with a peak at 640 nm exhibit different thermal-quenching effects, which resulted in excellent temperature sensitivity, with the maximum absolute and relative sensitivities reaching 0.236 K-1 and 3.77% K-1 in a temperature range from 300 to 400 K. Both the absolute and relative sensitivities are among the highest values for luminescence thermometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call