Abstract

Seedless growth of vertically aligned nanostructures, which can induce smoother transport and minimize Ohmic contact between substrate and semiconductor, can be fabricated by in situ growth utilizing modified hydrothermal methods. Such devices can be useful in designing non-invasive ultrasensitive hand-held sensors for diagnostic identification of volatile organic compounds (VOCs) in exhaled air, offering pain-free and easier detection of long-term diseases such as asthma. In the present work, WO3 nanoblocks, with a high surface area and porosity, have been grown directly over transparent conducting oxide to minimize Ohmic resistance, facilitating smoother electron transfer and enhanced current response. Further modification with porous alumina (γ-Al2 O3 ), by electrodeposition, resulted in the selective and ultrasensitive detection of NOX in simulated exhaled air. Crystal phase purity of as-fabricated pristine as well modified samples is validated with X-ray diffraction analysis. Morphological and microstructural analyses reveal the successful deposition of porous alumina over the surface of WO3 . Improved surface area and porosity is presented by porous alumina in the modified WO3 device, suggesting more active sites for the gas molecules to get adsorbed and diffuse through the pores. Oxygen vacancies, which are detrimental in the transport phenomenon in the presented sensors, have been studied using X-ray photoelectron spectroscopic (XPS) analysis. Gas sensing studies have been performed by fabricating chemiresistor devices based on bare WO3 and Al2 O3 -modified WO3 . The higher sensitivity for NOX gas in case of γ-Al2 O3 -modified WO3 based devices, as compared to bare WO3 -based devices, is attributed to the better surface area and charge transport kinetics. The presented device strategy offers crucial understanding in the design and development of non-invasive, hand-held devices for NO gas present in the human breath, with potential application in medical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.