Abstract

A cavity ring-down (CRD) spectrometer is built with a continuous-wave Ti:sapphire ring laser. Using a pair of R approximately 0.999 95 high-reflective mirrors, the noise-equivalent minimum detectable absorption loss reaches 7 x 10(-11)/cm over the spectral range of 780-830 nm. A thermal-stabilized Fabry-Perot interferometer is applied to calibrate the CRD spectrum with an accuracy of 1 x 10(-4) cm(-1). The quantitative measurement is carried out for the line profile measurements of some overtone absorption lines of C(2)H(2) near 787 nm. Doppler determined line shape has been observed with milli-Torr acetylene gas in the ring-down cavity. The instrumental line width is estimated from the line profile fitting to be <1 x 10(-4) cm(-1). It demonstrates that the CRD spectrometer with extremely high sensitivity is also very suitable for quantitative measurements including precise line profile studies in the near-infrared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call