Abstract

Ultrasensitive electrochemical detection of hydrazine using nanosized Au particles self-assembled on a sol−gel-derived 3D silicate network is described. The citrate-stabilized gold nanoseeds (GNSs) were self-assembled on the thiol groups of the silicate network, which was preassembled on a polycrystalline Au electrode. The size of the GNSs on the network was enlarged by a seed-mediated growth approach, and the GNSs were characterized by UV−visible spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and electrochemical measurements. The enlarged nanoparticles (GNEs) on the silicate network have a size distribution between 70 and 100 nm and behave as a nanoelectrode ensemble. This nanostructured platform is highly sensitive toward the electrochemical oxidation of hydrazine. A very large decrease in the overpotential (∼800 mV) and significant enhancement in the peak currents with respect to the bulk Au electrode were observed without using any redox mediator. The nanos...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.