Abstract

Herein, dihydrolipoic acid (DHLA)-stabilized copper nanoclusters (Cu NCs) with high aggregation-induced electrochemiluminescence (AIECL) in polymer hydrogel were prepared to construct an ECL biosensor for detection of microRNA-21. DHLA, a small molecule ligand with two sulfhydryl groups, was used as a protective agent to synthesize Cu NCs, which improved the ECL stability and intensity of Cu NCs. Furthermore, the Cu NCs were loaded into the (PVP-PVA)hydrogel to form the DHLA-Cu NCs@(PVP-PVA)hydrogel composite, which showed effective AIECL performance. The confinement of Cu NCs into the hydrogel increased the local concentration of Cu NCs, which could not only prevent oxides from entering the copper core, but also limit the vibration to reduce non-radiative transitions of Cu NCs, leading to a distinct AIECL emission. Then, combined with the self-priming clip trigger isothermal amplification (SCTIA) technology, an ECL biosensor was constructed to realize the sensitive detection of miRNA-21. Interestingly, SCTIA technology was a simple and efficient strategy that realized multiple-cycle amplified processes to acquire a mass of output DNA, achieving remarkable signal amplification. Therefore, this strategy provided an efficient approach in the preparation of Cu NCs with high AIECL emission and target amplification technology, which might have promising potential in clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.