Abstract

The measurement of optical rotation is fundamental to optical atomic magnetometry. Ultra-high sensitivity has been achieved by employing a quasi-Wollaston prism as the beam splitter within a quantum entanglement state, complemented by synchronous detection. Initially, we designed a quasi-Wollaston prism and intentionally rotated the crystal axis of the exit prism element by a specific bias angle. A linearly polarized light beam, incident upon this prism, is divided into three beams, with the intensity of each beam correlated through quantum entanglement. Subsequently, we formulated the equations for optical rotation angles by synchronously detecting the intensities of these beams, distinguishing between differential and reference signals. Theoretical analysis indicates that the measurement uncertainty for optical rotation angles, when using quantum entanglement, exceeds the conventional photon shot noise limit. Moreover, we have experimentally validated the effectiveness of our method. In DC mode, the experimental results reveal that the measurement uncertainty for optical rotation angles is 4.7 × 10−9 rad, implying a sensitivity of 4.7 × 10−10 rad/Hz1/2 for each 0.01 s measurement duration. In light intensity modulation mode, the uncertainty is 48.9 × 10−9 rad, indicating a sensitivity of 4.89 × 10−9 rad/Hz1/2 per 0.01 s measurement duration. This study presents a novel approach for measuring small optical rotation angles with unprecedentedly low uncertainty and high sensitivity, potentially playing a pivotal role in advancing all-optical atomic magnetometers and magneto-optical effect research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.