Abstract

The Cu/Zn-zeolitic imidazolate framework (Cu/Zn-ZIF) was synthesized using the traditional hydrothermal method, and its surface morphology was controlled by adding polyvinylpyrrolidone (PVP) during its synthesis. It was then calcined at 800 °C to form the nitrogen-containing carbon material CuZn@NC, which improved the electron transfer rate. Scanning electron microscopy (SEM), X-ray crystal diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to investigate the surface morphology and structure. Finally, the electrochemical sensing platform for luteolin was effectively constructed by changing the metal-ion ratio during synthesis to achieve the most suitable electrode material. The sensor platform detects luteolin well, with an operating curve equation of Ip (A) = 0.0571C (nM) - 1.2913 and a minimum detection limit of 15 nM, and the platform has been successfully employed for luteolin detection in real samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call