Abstract

A novel signal-on and label-free resonance Rayleigh scattering (RRS) aptasensor was constructed for detection of Hg(2+) based on Hg(2+)-triggered Exonuclease III-assisted target recycling and growth of G-quadruplex nanowires (G-wires) for signal amplification. The hairpin DNA (H-DNA) was wisely designed with thymine-rich recognition termini and a G-quadruplex sequence in the loop and employed as a signal probe for specially recognizing trace Hg(2+) by a stable T-Hg(2+)-T structure, which automatically triggered Exonuclease III (Exo-III) digestion to recycle Hg(2+) and liberate the G-quadruplex sequence. The free G-quadruplex sequences were self-assembled into guanine nanowire (G-wire) superstructure in the presence of Mg(2+) and demonstrated by gel electrophoresis. The RRS intensity was dramatically amplified by the resultant G-wires, and the maximum RRS signal at 370 nm was linear with the logarithm of Hg(2+) concentration in the range of 50.0 pM to 500.0 nM (R = 0.9957). Selectivity experiments revealed that the as-prepared RRS sensor was specific for Hg(2+), even coexisting with high concentrations of other metal ions. This optical aptasensor was successfully applied to identify Hg(2+) in laboratory tap water and river water samples. With excellent sensitivity and selectivity, the proposed RRS aptasensor was potentially suitable for not only routine detection of Hg(2+) in environmental monitoring but also various target detection just by changing the recognition sequence of the H-DNA probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call