Abstract

The development of pressure sensors with high sensitivity and effectiveness that exhibit linearity over a wide pressure range is crucial for wearable devices. In this study, we fabricated a novel ionic liquid (IL)/polymer composite with a convex and randomly wrinkled microstructure in a cost-effective and facile manner using an opaque glass and stretched polydimethylsiloxane template. The fabricated IL/polymer composite was used as the dielectric layer in a capacitive pressure sensor. The sensor exhibited a high linear sensitivity of 56.91 kPa-1 owing to the high interfacial capacitance formed by the electrical double layer of the IL/polymer composite over a relatively wide range (0-80 kPa). We also demonstrated the sensor performance for various applications such as a glove-attached sensor, sensor array, respiration monitoring mask, human pulse, blood pressure measurement, human motion detection, and a wide range of pressure sensing. It would be expected that the proposed pressure sensor has sufficient potential for use in wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.