Abstract

Ultrasensitive impedimetric lectin biosensors recognizing different glycan entities on serum glycoproteins were constructed. Lectins were immobilized on a novel mixed self-assembled monolayer containing 11-mercaptoundecanoic acid for covalent immobilization of lectins and betaine terminated thiol to resist nonspecific interactions. Construction of biosensors based on Concanavalin A (Con A), Sambucus nigra agglutinin type I (SNA), and Ricinus communis agglutinin (RCA) on polycrystalline gold electrodes was optimized and characterized with a battery of tools including electrochemical impedance spectroscopy, various electrochemical techniques, quartz crystal microbalance (QCM), Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) and compared with a protein/lectin microarray. The lectin biosensors were able to detect glycoproteins from 1 fM (Con A), 10 fM (Ricinus communis agglutinin (RCA), or 100 fM (SNA) with a linear range spanning 6 (SNA), 7 (RCA), or 8 (Con A) orders of magnitude. Furthermore, a detection limit for the Con A biosensor down to 1 aM was achieved in a sandwich configuration. A nonspecific binding of proteins for the Con A biosensor was only 6.1% (probed with an oxidized invertase) of the signal toward its analyte invertase and a negligible nonspecific interaction of the Con A biosensor was observed in diluted human sera (1000×), as well. The performance of the lectin biosensors was finally tested by glycoprofiling of human serum samples from healthy individuals and those having rheumatoid arthritis, which resulted in a distinct glycan pattern between these two groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call