Abstract

In this study, we present a thoughtful integration of a dispersive solid-phase sorbent and oxine for the ultrasensitive and highly selective determination of Al3+ ions. Cobalt ferrite nanoparticles (CoFe2O4 NPs) modified with oxine were employed to facilitate the pre-concentration and estimation of Al3+, forming highly fluorescent chelate. The modification process included the assistance of sodium dodecyl sulfate (SDS) and sonication. The results indicated that the fluorescence intensity of Al3+-oxine/SDS@CoFe2O4 NPs surpassed that of Al3+-oxine alone. The confirmation of the successful functionalization of CoFe2O4 NPs with oxine was established through various techniques. Under optimal conditions, the fluorescence intensity exhibited a positive correlation with increasing concentrations of Al3+ within the range of 0.029-600 ng mL-1, achieving a detection limit of 0.0087 ng mL-1 based on signal to noise ratio 3 : 1. The developed method was effectively applied to the determination of Al3+ in drinking water samples, yielding recoveries in the range of 97.19% to 103.13%, with a relative standard deviation (RSD%) not exceeding 3.78%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call