Abstract

Accurately acquiring crucial data on the ambient surroundings and physiological processes delivered via subtle temperature fluctuation is vital for advancing artificial intelligence and personal healthcare techniques but is still challenging. Here, we introduce an electrically induced cation injection mechanism based on thermal-mediated ion migration dynamics in an asymmetrical polymer bilayer (APB) composed of nonionic polymer and polyelectrolyte layers, enabling the development of ultrasensitive flexible temperature sensors. The resulting optimized sensor achieves ultrahigh sensitivity, with a thermal index surpassing 10,000 K-1, which allows identifying temperature differences as small as 10 mK with a sensitivity that exceeds 1.5 mK. The mechanism also enables APB sensors to possess good insensitivity to various mechanical deformations─features essential for practical applications. As a proof of concept, we demonstrate the potential impact of APB sensors in various conceptual applications, such as mental tension evaluation, biomimetic thermal tactile, and thermal radiation detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call