Abstract

Multiblock DNA probe attracted a large amount of scientific attention, for the development of multitarget biosensor and improved specificity/sensitivity. However, the development of multiblock DNA probes highly relied on the chemical synthesis of organic linkers or nanomaterials, which limited their practicability and biological compatibility. In this work, we developed a label-free assembling strategy using a triblock DNA capture probe, which connects two DNA probes with its intrinsic polyA fragment (probe-PolyA-probe, PAP). The middle polyA segment has a high affinity to the gold electrode surface, leading to excellent reproducibility, stability, and regeneration of our biosensor. Two flanking capture probes were tandemly co-assembled on the electrode surface with consistent spatial relationship and exactly the same amount. When combined with the target DNA, the hybridization stability was improved, because of the strong base stacking effect of two capture probes. The sensitivity of our biosensor was proved to be 10 fM, with a wide analysis range between 10 fM to 1 nM. Our PAP-based biosensor showed excellent specificity when facing mismatched DNA sequences. Even single nucleotide polymorphisms can be distinguished by each probe. The excellent practicability of our biosensor was demonstrated by analyzing genomic DNA both with and without PCR amplification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.