Abstract

The high occurrence of prostate cancer in men makes the prostate-specific antigen (PSA) screening test really important. More importantly, the recurrence rate after radical prostatectomy is high, whereas the traditional PSA immunoassay does not possess the sufficient high sensitivity for post-treatment PSA detection. In these assays, uncontrolled and random orientation of capture antibodies on the surface largely reduces their activity. Here, by exploiting the rapidly emerging DNA nanotechnology, we developed a DNA nanostructure based scaffold to precisely control the assembly of antibody monolayer. We demonstrated that the detection sensitivity was critically dependent on the nanoscale-spacing (nanospacing) of immobilized antibodies. In addition to the controlled assembly, we further amplified the sensing signal by using the gold nanoparticles, resulting in extremely high sensitivity and a low detection limit of 1 pg/mL. To test the real-world applicability of our nanoengineered electrochemical sensor, we evaluated the performance with 11 patients' serum samples and obtained consistent results with the "gold-standard" assays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.