Abstract

In view of the urgent need to determine polychlorinated biphenyls (PCBs) in the environment, we report a simple and sensitive electrochemical aptasensor to detect 3,3′,4,4′-tetrachlorobiphenyl (PCB77) based on Exonuclease III-powered Deoxyribonucleic Acid (DNA) walking machine using poly (diallyldimethylammonium chloride) (PDDA), which was functionalized hollow porous graphitic carbon nitride/ Ni-Co hollow nanoboxes/ Au-Pd-Pt nanoflowers composite material. Upon the addition of PCB77, the specific binding between PCB77 and the aptamer (Apt) could trigger the Exo III-assisted cyclic amplification process and release unlocking probes to deblock the Swing arm/Blocker duplex. Finally, the hybridized hairpin 3 (HP3), a short oligonucleotide, was left on the electrode via Exo III digestion of hybridized HP2, and thus a strong methylene blue (MB) signal was obtained. As expected, the proposed aptasensor exhibits exceptional PCB77 detection performances with a very low detection limit of 5.13 pg/L and a wide linear range of 0.01–100 ng/L based on the calibration curve. Moreover, the aptasensor presents a high level of selectivity and stability, with an acceptable degree of reproducibility. The results of this study have indicated that the proposed aptasensor has great potential application prospects, as demonstrated by its successful use in real environmental water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call