Abstract

MicroRNA exhibits different levels of expression in cancer and can affect the transformation, metastasis, and carcinogenesis of the cancer cell. Herein, we developed a novel kind of electrochemical microRNA biosensor based on two-dimensional nanomaterial of antimonene nano-flakes (AMNFs) and carbon quantum dots (CQDs) which were used as substrating to cadmium ion (Cd2+) for specific detection of breast cancer-relevant biomarker-microRNA-21. Compared to graphene, the first principle energetic calculation shows that the AMNFs have completely a stronger force interaction with single strand (ssRNA), due to the antimonene has a more delocalized 5 s/5p orbital.After the addition of complementary microRNA, due to the low adsorption affinity of double-stranded RNA (dsRNA) to antimonene, the hybridized target is easy to desorb from the antimonene interface, and the oxidation peak of metal ions is significantly reduced. Results showed the microRNA-21 concentration can be detected from 100 aM to 1 nM, the limit of detection as low as 21 aM toward microRNA-21, which is 3 times lower than those of the established microRNA biosensors. The unique combination of not be attempted before existing sensing material which has special adsorption properties represents an approach to the detection of breast cancer. And it provides a promising method for early diagnosis, monitoring, and staging of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.