Abstract

DNA damage at the level of individual cells can be detected using the single cell gel electrophoresis (SCGE) or `comet' assay. In the present study, we report novel variations on the conventional comet assay that can be used to enhance the microscopic detection of DNA damage. Hydrogen peroxide-treated peripheral blood leukocytes were used as a DNA damage model system. Cells were embedded in agarose, treated, and electrophoresed according to the procedure of Singh et al. [N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res. 175 (1988), p. 184–191]. However, sites of strand breaks were directly labeled with the TUNEL (TdT-mediated fluorescein-dUTP nick end labeling) method. This labeling protocol revealed clumps and/or a series of stripes in the comet tail perpendicular to the direction of electrophoresis; these sites may account for the substructure seen in conventional comet assays. In a second comet variation, we passed an opaque disk into a field-conjugated plane of the microscope near the lamp, thus occluding the nucleus' image. Nuclear occultation allows the intensified charge-coupled device (ICCD) camera gain to increase to a single photon detection level thus revealing low levels of DNA damage in the tail. These methods offer a substantial improvement in sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call