Abstract
Transition metal oxides are widely used in electrochemical detection because of the promotion of redox of heavy metal ions (HMIs) by valence change behavior. However, it is challenging to favorably promote the valence change to achieve the improvement of detection sensitivity. Herein, a Mn3O4/g-C3N4 composite (named as MO-CN) with small-sized of Mn3O4 and high proportion of Mn(II) and Mn(III) was prepared, which reveals an excellent performance on detecting mercury ion (Hg(II)). It is discovered that Mn3O4 becomes small in size and well disperses on g-C3N4, which solves the adverse effect of agglomeration and also lead to a good conductivity. And g-C3N4 can provide more adsorption sites to enhance the adsorption on Hg(II). Heterojunction is proved to form in MO-CN and thus accelerates electrons to flow from g-C3N4 to Mn3O4. This results in transforming Mn(IV) to Mn(II) and Mn(III) in Mn3O4, thereby promoting the cycle of Mn(II)/Mn(III)/Mn(IV) and furthermore facilitating the redox of Hg(II). Simultaneously, the obtained sensitivity (473.43 μA μM−1 cm−2) and limit of detection (LOD, 0.003 μM) are as expected. The nanocomposites and heterojunction based on transition metal oxide and 2D nanomaterials is promising to boost the detection of HMIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.