Abstract

With respect to the detection of Fe3+ ions, graphene quantum dots (GQDs) have limitations for commercialization owing to their high limit of detection (LOD). Here, we report a one-step pulsed laser ablation (PLA) process to fabricate amino-functionalized GQDs (FGQDs) for the efficient detection of Fe3+ using polypyrrole (PPy) both as a precursor (amine N) and as a surfactant and also using graphite as a carbon precursor. Using this method, the amine N groups were easily incorporated into the carbon network of the GQDs. Additionally, compared to pristine GQDs, FGQDs showed smaller particle sizes and narrower size distributions owing to the surface passivation effects of the PPy surfactant. Due to the synergistic effect of surface passivation and incorporation of amine N groups, FGQDs exhibited a sensitive response to Fe3+ ions in the concentration range of 500 nM to 50 μM, which is lower than the quality standards for Fe3+ ions (∼5.36 μM) as suggested by the World Health Organization (WHO). Furthermore, the processing time for synthesizing FGQDs by the PLA process was less than 30 min, thus allowing successful practical applications of GQDs in the sensing field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.