Abstract

Currently, most carbon monoxide (CO) gas sensors work at high temperatures of over 150 °C. Developing CO gas sensors that operate at room temperature is challenging because of the sensitivity trade-offs. Here, we report an ultrasensitive CO gas sensor at room temperature using fluorine-graphdiyne (F-GDY) in which electrons are increased by light. The GDY films used as channels of field-effect transistors were prepared by using chemical vapor deposition and were characterized by using various spectroscopic techniques. With exposure to UV light, F-GDY showed a more efficient photodoping effect than hydrogen-graphdiyne (H-GDY), resulting in a larger negative shift in the charge neutral point (CNP) to form an n-type semiconductor and an increase in the Fermi level from -5.27 to -5.01 eV. Upon CO exposure, the negatively shifted CNP moved toward a positive shift, and the electrical current decreased, indicating electron transfer from photodoped GDYs to CO. Dynamic sensing experiments demonstrated that negatively charged F-GDY is remarkably sensitive to an electron-deficient CO gas, even with a low concentration of 200 parts per billion. This work provides a promising solution for enhancing the CO sensitivity at room temperature and expanding the application of GDYs in electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.