Abstract

Bone fractures are a global public health problem. A sustained increase in the number of incident cases has been observed in the last few decades, as well as the number of prevalent cases and the number of years lived with disability. Current monitoring techniques are based on imaging techniques, which are highly subjective, radioactive, expensive and unable to provide daily monitoring of fracture healing stages. The development of reliable, non-invasive and non-subjective technologies is mandatory to minimize non-union risks. Delayed healing and non-union conditions require timely medical intervention, such that preventive procedures and shortened treatment periods can be carried out. This work proposes the development of an ultrasensitive capacitive sensing system for smart implantable fixation implants with ability to effectively monitor the evolution of bone fractures. Both in vitro experimental tests and numerical simulations highlight that networks of co-surface capacitive systems are able: (i) to detect four different bone healing phases, capacitance decrease patterns occurring as the healing process progresses and (ii) to monitor the callus evolution in multiple target regions. These are very promising results that highlight the potential of capacitive technologies to minimize the individual and social burdens related to fracture management, mainly when delayed healing or non-union conditions occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.