Abstract
This work describes the highly sensitive detection of organophosphorus pesticides employing the cobalt(II) 4,4,4,4-tetrasulfo-phthalocyanine (CoTSPc) macrocycle complex, carbon nanotubes (CNT), and 1-methyl-3-octylimidazolium tetrafluoroborate (OMIM[BF4]). The technique is based on enzyme acetylcholinesterase (AChE) inhibition. The composite was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and amperometry. The AChE was immobilized on the composite electrode surface by cross-linking with glutaraldehyde and chitosan. The synergistic action of the CoTSPc/CNT/OMIM[BF4] composite showed excellent electrocatalytic activity, with a low applied potential for the amperometric detection of thiocholine (TCh) at 0.0 V vs. Ag/AgCl. The calculated catalytic rate constant, k(cat), was 3.67 × 10(3) mol(-1) L s(-1). Under the optimum conditions, the inhibition rates of these pesticides were proportional to their concentrations in the ranges of 1.0 pmol L(-1) to 1.0 nmol L(-1) (fenitrothion), 2.0 pmol L(-1) to 8.0 nmol L(-1) (dichlorvos), and 16 pmol L(-1) to 5.0 nmol L(-1) (malathion).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.