Abstract

An ultrasensitive biosensing platform for DNA and ochratoxin A (OTA) detection is constructed based on the luminescence quenching ability of fullerenol quantum dots (FOQDs) for the first time. As the surface of FOQDs is largely covered by hydroxyl groups, stable colloidal suspension of FOQDS in aqueous solution can be obtained, which is very advantageous for application in biosensing compared to nano-C60. FOQDs can effectively quench the fluorescence of dyes with different emission wavelengths that are tagged to bioprobes to an extent of more than 87% in aqueous buffer solution through a PET mechanism. Moreover, the nonspecific quenching of the fluorescent dyes (not bound to bioprobes) caused by FOQDs is negligible, so the background signal is extremely low which is beneficial for improving the detection sensitivity. Based on the π–π stacking interaction between FOQDs and bioprobes, such as single-stranded (ss) DNA and aptamers, a nucleic acid assay with a detection of limit of 15 pM and a highly sensitive OTA assay with a detection limit of 5 pg mL−1 in grape juice samples are developed through the simple “mix and measure” protocol based on luminescence quenching-and-recovery. This is the first demonstration of constructing biosensors utilizing the luminescence quenching ability of FOQDs through a PET mechanism, and the pronounced assay performance implies the promising potential of FOQDs in biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.