Abstract

More and more evidence has proved that urinary metabolites can instantly reflect disease state. Therefore, ultra-sensitive and reproducible detection of urinary metabolites in a high-throughput way is urgently desirable for clinical diagnosis. Matrix-free laser desorption/ionization mass spectrometry (LDI-MS) is a high-throughput platform for metabolites detection, but it is encountered by severe interference from numerous salts in urine samples, because the crystallized urine salt on dried samples could result in poor reproducibility in LDI-MS detection. The present work proposed a tip-contact extraction (TCE) technique to eliminate interference from the urine salt. Vertical silicon nanowire arrays decorated with the fluorinated ethylene propylene film (FEP@VSiNWs) could effectively extract metabolites from the urine sample dropping on its surface. High salt tolerance was observed in the subsequent LDI-MS detection of the metabolites extracted on the tip of FEP@VSiNWs even in the presence of 1 M urea. Stable and reproducible mass spectra for non-target metabolic analysis were obtained in real urine samples with different dilution folds. Urinary metabolites collected from bladder cancer (BC) patients were reliably profiled by the TCE method coupled with negative LDI-MS. Based on this platform, potential metabolic biomarkers that can distinguish BC patients and normal controls were uncovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call