Abstract

It is a big challenge to monitor pathogens in food with high selectivity. In this study, we reported an ultrasensitive method for Escherichia coli O157:H7 detection based on immunomagnetic separation and labeled surface-enhanced Raman scattering (SERS). The bacterium was identified by heterogeneous recognition elements, monoclonal antibody (mAb), and aptamer. E. coli O157:H7 was separated and enriched by magnetic nanoparticles modified by mAb, and then a plasmonic nanostructure functionalized by aptamers with embedded Raman tags and interior gaps was utilized for further discrimination and detection. The selectivity was enhanced by two binding sites. The higher Raman enhancement was obtained by strong local electromagnetic field oscillation in the gap and the firm embedment of 4-mercaptopyridine (4-Mpy). Optimum experiments created that SERS signals of 4-Mpy at 1010 cm-1 had a good linearity with E. coli O157:H7 at a large range of 10 to 107 CFU/mL with a limit of detection of 2 CFU/mL. This method has great potential for on-site food pathogenic bacterial detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.