Abstract
Separations are core processes in the chemical and pharmaceutical industries. Several steps of fractionation and purification of multicomponent mixtures are required. Membrane technology can operate at fair temperatures, saving energy and processing sensitive compounds. However, breakthroughs require high stability and selectivity beyond those available today. Here, we propose membranes constituted by fully crosslinked crown ethers using interfacial polymerization. The 24 nm-thick nanofilms on robust porous supports exhibit up to 90% higher selectivity than commercially available membranes, with a 90% increase in solvent permeance. The membranes are tested with a complex mixture of structurally diverse solutes containing active pharmaceutical ingredients. The membranes are effective for the total retention and concentration of active pharmaceutical ingredients with molecular weights around 800 g mol–1. The ability to distinguish between smaller molecules in the range between 100 and 370 g mol–1 is confirmed with high separation factors, which could provide a significant advance for the pharmaceutical industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.