Abstract

A resorcinol-formaldehyde precursor was synthesized to fabricate the CO2 selective Carbon Molecular Sieve Membranes (CMSMs) developed in this study. The degree of polymerization (DP) was analyzed via Gel Permeation Chromatography (GPC) and its effect on the CO2/N2 perm-selectivity and CO2 permeance was investigated. The membrane that was polymerized at 80 °C (named R80) was selected as the best performing CMSM after a preliminary test. The post treatment with oxidative atmosphere was performed to increase the CO2 permeance and CO2/N2 perm-selectivity on membrane R80. The gas permeation results and Pore Size Distribution (PSD) measurements via perm-porometry resulted in selecting the membrane with an 80 °C polymerization temperature, 100 min of post treatment in 6 bar pressure and 120 °C with an oxygen concentration of 10% (named R80T100) as the optimum for enhancing the performance of CMSMs. The 3D laser confocal microscopy results confirmed the reduction in the surface roughness in post treatment on CMSMs and the optimum timing of 100 min in the treatment. CMSM R80T100 exhibiting CO2/N2 ideal selectivity of 194 at 100 °C with a CO2 permeability of 4718 barrier was performed higher than Robeson’s upper bound limit for polymeric membranes and also the other CMSMs fabricated in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.