Abstract

This paper presents the analysis of the statistics of latency and information theoretic capacity of an adaptive link with retransmission-spatial diversity in a scenario with co-channel interference. The paper focuses specifically on the delay of the wireless transmission component, measured from the instant a packet at the head of the queue is first transmitted until it is correctly received by the destination (considering retransmissions). The objective is to evaluate the ability of temporal and spatial diversity tools to achieve ultra-low values of latency as desired in future 5G and machine-to-machine (M2M) networks with real-time requirements. It is assumed that the source transmits information towards the destination in a Rayleigh fading spatially correlated channel. In case the instantaneous signal-to-interference-plus-noise (SINR) ratio has not surpassed a predetermined reception threshold, then the source engages in a persistent retransmission protocol. All the copies of the original transmission and subsequent retransmissions are stored in memory and processed at the destination using maximum ratio combining (MRC) to obtain a more reliable copy of the signal (a scheme also called retransmission diversity). The retransmission scheme stops once the instantaneous post-processing SINR achieves the desired target threshold. This persistent retransmission scheme can also be regarded as a security mechanism against interference jamming attacks. Since retransmissions are assumed to take place in a short time interval in order to achieve very low values of latency, they are modelled with statistical temporal correlation, which is explicitly introduced in the embedded Gaussian channel distribution model. Results suggest that retransmission diversity can provide good latency results in moderate to high values of SINR. However, at low SINR, a combination with other diversity sources will be necessary to achieve the desired target value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call