Abstract
We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator (−Δ)1/2, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral data for lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled E(k,l) series. For each orbital label l = 0, 1, 2, …, the label k = 1, 2, … enumerates consecutive lth series eigenvalues. Each of them is 2l + 1-degenerate. The l = 0 eigenvalues series E(k,0) are identical with the set of even labeled eigenvalues for the d = 1 Cauchy well: E(k,0)(d = 3) = E2k(d = 1). Likewise, the eigenfunctions ψ(k,0)(d = 3) and ψ2k(d = 1) show affinity. We have identified the generic functional form of eigenfunctions of the spherical well which appear to be composed of a product of a solid harmonic and of a suitable purely radial function. The method to evaluate (approximately) the latter has been found to follow the universal pattern which effectively allows to skip all, sometimes involved, intermediate calculations (those were in usage, while computing the eigenvalues for l ≤ 3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.