Abstract

AbstractBimetallic alloy nanomaterials are promising anode materials for potassium‐ion batteries (KIBs) due to their high electrochemical performance. The most well‐adopted fabrication method for bimetallic alloy nanomaterials is tube furnace annealing (TFA) synthesis, which can hardly satisfy the trade‐off among granularity, dispersity and grain coarsening due to mutual constraints. Herein, we report a facile, scalable and ultrafast high‐temperature radiation (HTR) method for the fabrication of a library of ultrafine bimetallic alloys with narrow size distribution (≈10–20 nm), uniform dispersion and high loading. The metal‐anchor containing heteroatoms (i.e., O and N), ultrarapid heating/cooling rate (≈103 K s−1) and super‐short heating duration (several seconds) synergistically contribute to the successful synthesis of small‐sized alloy anodes. As a proof‐of‐concept demonstration, the as‐prepared BiSb‐HTR anode shows ultrahigh stability indicated by negligible degradation after 800 cycles. The in situ X‐ray diffraction reveals the K+ storage mechanism of BiSb‐HTR. This study can shed light on the new, rapid and scalable nanomanufacturing of high‐quality bimetallic alloys toward extended applications of energy storage, energy conversion and electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call