Abstract

The earliest folding events in single-tryptophan mutants of RNase A were investigated by fluorescence measurements by using a combination of stopped-flow and continuous-flow mixing experiments covering the time range from 70 micros to 10 s. An ultrarapid double-jump mixing protocol was used to study refolding from an unfolded ensemble containing only native proline isomers. The continuous-flow measurements revealed a series of kinetic events on the submillisecond time scale that account for the burst-phase signal observed in previous stopped-flow experiments. An initial increase in fluorescence within the 70-micros dead time of the continuous-flow experiment is consistent with a relatively nonspecific collapse of the polypeptide chain whereas a subsequent decrease in fluorescence with a time constant of approximately 80 micros is indicative of a more specific structural event. These rapid conformational changes are not observed if RNase A is allowed to equilibrate under denaturing conditions, resulting in formation of nonnative proline isomers. Thus, contrary to previous expectations, the isomerization state of proline peptide bonds can have a major impact on the structural events during early stages of folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.