Abstract

With the deepening of cancer clinical research, miRNAs provide new ideas for molecular diagnosis and treatment of tumors. Improving the molecular delivery efficiency of miRNA is the key to the success of miRNA therapy. We have established self-assembly diagnosis and treatment technologies that can be used to achieve accurate targeting and "cargo" delivery at the cellular level. This technology builds a miRNA (let-7a) delivery system based on metal precursor [Au(III) and Fe(II)]-mediated tumor microenvironmental response to realize the self-assembly of Au&Fe-miRNA complexes for precise real-time imaging of tumor cells and targeted therapy. To accurately measure the changes in reactive oxygen species during complex formation in real time at the single-cell level, we employed small-size nanoscale devices as analytical tools. This study proposes an electrochemical sensor based on carbon fiber electrodes for ultraprecise and multiple monitoring of metal-ion-mediated miRNA delivery systems, precisely realizing targeted tracking of tumors and effective intervention inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.