Abstract
Graphical Gaussian models (GGMs) are a promising approach to identify gene regulatory networks. Such models can be robustly inferred by solving the sparse inverse covariance selection (SICS) problem. With the high dimensionality of genomics data, fast methods capable of solving large instances of SICS are needed. We developed a novel network modeling tool, Ultranet, that solves the SICS problem with significantly improved efficiency. Ultranet combines a range of mathematical and programmatical techniques, exploits the structure of the SICS problem and enables computation of genome-scale GGMs without compromising analytic accuracy. Ultranet is implemented in C++ and available at www.broadinstitute.org/ultranet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.