Abstract

We theoreticallydemonstrate the realization of the ultranarrow dual-band perfect absorption at visible range in 3D metamaterials comprising Au vertical split-ring resonators (VSRRs) array above a thick Au film for high-sensitivity sensing. By placing the 3D metamaterial of Au VSRRs directly onto the Au substrate to remove the dielectric substrates effect, the simulated results reveal that ultranarrow dual-band perfect absorption with the two narrow absorption bandwidth of 7.3 nm and 1.1 nm in the visible regime can be excited from pure magnetic plasmon (MP) resonance and via the strong coupling between the MP resonance of the VSRRs and the surface plasmons polaritons (SPPs) propagating on the Au film, respectively. Moreover, coupling effects in the VSRRs with different structural parameters also are studied in detail. Because of the ultranarrow dual-band perfect absorption of the VSRRs being extremely sensitive to the changes of the material surrounding, our proposed 3D metamaterial exhibits ultrahigh sensitivity ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> = 918 nm/RIU, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">*</sup> = 680/RIU) and figure of merit ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FoM</i> = 835, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FoM</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">*</sup> = 4.5×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> ) in near-infrared regime, which hold potential applications in label-free biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.