Abstract

Herein, we report a simple, sensitive, rapid and low-cost ultraminiaturized assay technique for quantitative detection of 1μl of clinical or biochemical sample on a novel ultraminiaturized assay plate (UAP). UAP is prepared by making tiny cavities on a polypropylene sheet. As UAP cannot immobilize a biomolecule through absorption, we have activated the tiny cavities of UAP by 1-fluoro-2-nitro-4-azidobenzene in a photochemical reaction. Activated UAP (AUAP) can covalently immobilize any biomolecule having an active nucleophilic group such as amino group. Efficacy of AUAP is demonstrated by detecting human IgE, antibody of hepatitis C virus core antigen and oligonucleotides. Quantification is performed by capturing the image of the colored assay solution and digitally quantifying the image by color saturation without using costly NanoDrop spectrophotometer. Image - based detection of human IgE and an oligonucleotide shows an excellent correlation with absorbance - based assay (recorded in a NanoDrop spectrophotometer); it is validated by Pearson's product-moment correlation with correlation coefficient of r = 0.9545088 and r = 0.9947444 respectively. AUAP is further checked by detecting hepatitis C virus Ab where strong correlation of color saturation with absorbance with respect to concentration is observed. Ultraminiaturized assay successfully detects target oligonucleotides by perfectly hybridizing with their respective complementary oligonucleotide probes but not with a random oligonucleotide. Ultraminiaturized assay technique has substantially reduced the requirement of reagents by 100 times and assay timing by 50 times making it a potential alternative to conventional method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.